- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Banad, Yaser M (1)
-
Banad, Yaser Mike (1)
-
Gartia, Manas Ranjan (1)
-
Hasan, Syed Mohammad Abid (1)
-
Nazari, Masoumeh (1)
-
Sharif, Sarah (1)
-
Sharif, Sarah S. (1)
-
Veronis, Georgios (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a class of inverse-designed, aperiodic multilayer graphene-based perfect absorbers operating in the mid-infrared spectrum (3–5 μm), a range vital for atmospheric transparency and advanced sensing. Our design leverages a fixed material sequence—graphene, PPSU dielectric spacers, and PbSe layers on a gold substrate—while achieving precise spectral tunability solely through layer thickness variation, enabling absorption peak control in 0.25 μm steps without any change in material composition. This physical tunability allows scalable fabrication of wavelength-specific devices using a single manufacturing process. We further demonstrate electrical switchability by dynamically modulating graphene’s chemical potential (µc from 0 eV to 1 eV), enabling absorption amplitude control and wavelength redshifting without structural alteration. The proposed absorber achieves > 99.9% efficiency using only five graphene layers in a compact ~ 2 μm stack, offering significant advantages in size, weight, power, and cost. Our hybrid micro-genetic inverse design algorithm enables this performance while preserving > 90% absorption at incidence angles up to 52°, supporting broad angular robustness. Extensive simulation and field distribution analyses confirm the role of plasmonic confinement and impedance matching. Additionally, we validate the design’s fabrication tolerance and benchmark its performance against recent state-of-the-art absorbers. By combining advanced inverse design with nanophotonic structures, our work advances the field of mid-infrared absorbers, providing a scalable and efficient platform for next-generation optical devices.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Banad, Yaser Mike; Hasan, Syed Mohammad Abid; Sharif, Sarah S.; Veronis, Georgios; Gartia, Manas Ranjan (, Nano Select)Abstract This paper delves into the intricate world of whispering gallery mode (WGM) resonators within complex microsphere configurations, exploring their optical properties and behavior. Integrated with optical sensing and processing technology, WGM resonators offer compact size, high sensitivity, rapid response, and tunability. The study investigates the impact of configuration, size, excitation, polarization, and coupling effects on WGM properties. Notable findings include enhanced sensitivity in single microsphere resonators, influence of unequal sphere sizes and excitation locations on WGM modes, and higher quality factors (Q‐factors) in triangular three‐microsphere resonator configurations. Circular polarization was found to elevate Q‐factors, while the nine‐microsphere resonator configuration exhibited increased intensity of dominant WGM peaks with higher laser power, suppressing other peaks. These insights guide the design and optimization of microsphere resonator systems, positioning them for applications in sensing and optical information processing.more » « less
An official website of the United States government
